Relevant Models for Exposure Assessments of VCCEP Chemicals

Presentation at EPA/ACC Technical Workshop for

Voluntary Children's Chemical Evaluation Program December 11-13, 2001 Herndon, Virginia

Paul S. Price, Director
The Lifeline Group

Topics

- Children's Exposures
- Types of models
- History of models
- Review/overview of existing models
- Relevance of existing models

Children's Exposures

- Diet, tapwater, inhalation
 - Higher intake rates
 - Different foods
- Unique pathways
 - Soil ingestion
 - Hand to mouth
 - Toys
- Activity patterns
 - Different microenvironments
 - More time in the home

Modeling Children's Exposures

- Age-specific data on
 - Intake of food, water and air
 - Physiology
 - Body weight and surface area
 - Behaviors
 - Mouthing behaviors
- Microenvironments
 - In Utero
 - Residence
 - Daycare, preschool, schools
 - Sports
 - Toys

Two Types of Models

- Models created for the sake of efficiency
 - Automate calculations that replace pen and paper/spreadsheets
 - Reduce costs, improve accuracy and consistency
 - Develop when one set of scenarios and assumptions are used repeatedly in multiple assessments
 - RECRA/CERCLA Sites and PMNs
- Models created to generate data that can not be developed in any other way
 - Air dispersion and ground water models
 - Models of interindividual variation and uncertainty
 - Aggregate and cumulative exposures

History/Motivation for Model Development

- CAA-Air Toxics
 - Dispersion Modeling
 - Air toxics in microenvironments
 - Aggregate assessments for the assessment of residual risks
- TSCA/EU requirements
 - Product stewardship
 - Consumer (home and commercial)
- RCRA/Superfund/UST
 - Thousands of sites
- FIFRA/FQPA
 - Product stewardship
 - Dietary
 - Aggregate/Cumulative

Air Models

- Point source releases
 - TOXST/LT
- Indoor air (Source to air)
 - CONTAM
 - IAXQ-Excellent source models
 - RISK
 - MCCEM-Muti-room
- Microenvironment (Indirect) Models
 - CPIEM
 - TEM-Tapwater
 - NEM/pNEM/HAPEM-MS/SHAPE/SCREAM
 - TRIM/APEX (2.0)

Air Models

- Screening
 - EFAST
 - MCCEM
- Refined source modeling
 - IAXQ
 - Promise (solvents)
- Refined exposure (people)
 - CPIEM
 - APEX (2.0)
- Refined water models
 - TEM
- Aggregate
 - APEX?
 - 4/2

Consumer/Commercial Models

- -EFAST
- **-USES/EUSES**
- ChemSTEER
- CONSEXPO-3
- PROMISE-Probabilistic capabilities

Consumer Models

- Screening
 - EFAST
 - CONSEXPO-3
 - USES/EUSES
 - ChemSTEER
 - PROMISE-Probabilistic capabilities
- Refined
 - CONSEXPO
 - PROMISE
- Aggregate

RCRA/Superfund/Industrial Sites

- Driven by the need of efficiency
 - Thousands of sites
 - Consistent guidance (RAGS)
- Perform tiered analyses
 - Site specific data
 - deterministic and probabilistic

Site Oriented Models (Waste/Industrial site)

- API DSS
- CalTOX
- MEPAS
- MMSOILS
- RISK*ASSISTANT
- SmartRISK

RCRA/Superfund/Industrial Sites

- Screening
 - EFAST
 - CalTOX
 - APIDSS
 - SMARTRisk
- Refined
 - CalTOX
- Aggregate
 - 49

- Created to meet the need to regulate pesticides under FIFRA
- Deterministic and probabilistic versions
- Not intended to address local sources of contamination
 - Home gardens
 - Local contamination of food

- Based on USDA Continuing Survey of Food Intakes by Individuals (CSFII)
- Allows the user to enter data on chemical concentrations in specific crops
- Models use CSFII and food recipes to estimate the daily dose from diet for general population and subpopulations of adults and children

- DEPM (available from EPA-ORD)
- DEEMSTM (limited availability, not transparent)
- CARES (under development by ACPA 2002)
- SHEDS-Pesticides (under development by EPA ORD, 2002/3)
- LifeLineTM Version 1.1 (ask me for a copy)

- All models can be run in screening modes and in refined assessments
- Excellent for the evaluation of background exposures

Modeling Aggregate Exposures

- Determination of concurrent exposures a chemical from multiple routes and sources
- Who, When, Where, and What?
- Why use modeling for aggregate exposures?

Assessing a Single Source of Exposure

Non- Exposed Individuals

Aggregate Exposures from Two Independent Sources of Exposure

Non- Exposed Individuals

Characterizing Aggregate Exposure Using Conservative Assumptions

Non- Exposed Individuals

Reality for Many Chemicals

Options for Assessing Aggregate (Multi Route-Multi source) Exposures

- Use of conservative approaches leads to difficulties
 - Conservative addition of exposure from multiple sources becomes less and less plausible as the number of sources increases
 - Limits the ability to manage risk
- Computer modeling of concurrent exposures
 - Survey-based approach
 - Simulation modeling

Using Conservative Assumptions for Sixteen Sources

Only Certain Sources Overlap

Options for Assessing Aggregate (Multi Route-Multi source) Exposures

- Use of conservative approaches have difficulties
 - Conservative addition of risk from multiple products becomes less and less plausible as the number of sources increases
 - Limits the ability to manage risk
- Computer modeling of concurrent exposures
 - Survey-based approaches
 - Simulation modeling

Survey-Based Approaches

- A single survey determines what a person's concurrent exposures are on a given day
 - Market basket surveys
 - Duplicate dietary surveys
- Basis of the existing dietary models
 - All foods consumed on a given day by one individual
- This approach is difficult to:
 - Extend to non-dietary sources of exposure
 - Determine for multiple days

Simulation Modeling

- Create a model of the entire population (exposed and unexposed) using data from multiple surveys of the target population
- Model the population individual-by-individual
- Model each day of each individual's life for one year or longer
 - Determine the exposure or absence of exposure to each source
 - Determine the resulting dose
 - Sum to give the total daily dose
- The distribution of total dose across individuals provides a model of the target population

Aggregate Exposure Models

- Regulatory support models
 - CalendexTM (Limited Availability)
 - LifelineTM (Available)
 - CARESTM (Available 2002)
 - TRIM (Available 2002/3)
- Research models
 - MENTOR
 - SHEDS (2002/3)

Aggregate Exposure Models

- All of the models can be run as screening and as refined models
- All are probabilistic
- All are acute-1 year
- LifeLine is the only model that does lifetime
- Diet and tapwater modeling can be applied to any chemicals
- Aggregate framework in place for other sources but:
 - Residential limited to pesticides
 - Difficult to integrate localized sources of exposure

Models and Children's Exposures

- Screening level models
 - EFAST, CONSEXPO
- Indoor air
 - Screening level MCCEM, PROMISE
 - Advanced IAXQ, TEM
- Local sources of contamination
 - CalTOX, SmartRisk
- Current aggregate models
 - Strong ability for diet and tapwater
 - Weaker for local sources and non-pesticides

Summary

- A wide variety of models are currently available or under development
- Models are relevant to specific sources of exposure and allow both screening and refined assessments
- Conceptual framework for aggregate exposure models has been established
- Aggregate models addressing many, but not all, sources are under development

